

Established by the European Commission

Slide of the Seminar

Precipitating Quasi-Geostrophic Equations

Prof. Leslie M. Smith

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Precipitating Quasi-Geostrophic Equations

Jon Martin, Sam Stechmann, Alfredo Wetzel, L.M. Smith

polar and subtropical jets merge over the Pacific Support from NSF AGS 1443325 at UW-Madison

Goals

Derive/analyze a precipitating QG model for large-scale mid-latitudes ==> effects of latent heat release for storms

Figure by Jon Martin/Andrew Winters

Outline

The minimal FARE mode

Boussinesq Core with Linearized Thermodynamics

Asymptotically Fast Cloud Microphysics (condensation, evaporation, auto-conversion)

- Derivation of PQG from FARE
- Eady Baroclinic Instability Analysis
- Ongoing Work and Open Problems

Boussinesq with Warm-Rain Bulk Cloud Physics

$$\frac{D\mathbf{u}}{Dt} + f\sin(\phi)\mathbf{u}_{h}^{\perp} = -\nabla p + \mathbf{k} g \left(\frac{\theta}{\theta_{o}} + \frac{R_{vd}q_{v}}{R_{vd}q_{v}} - \frac{q_{c}}{q_{c}} - \frac{q_{r}}{q_{r}}\right)$$

$$\nabla \cdot \mathbf{u} = 0, \quad \frac{D\theta}{Dt} + w \frac{d\tilde{\theta}(z)}{dz} = \frac{L}{c_p} (C_d - E_r)$$

 $\theta^{\mathrm{tot}}(\mathbf{x},t) = \widetilde{\theta}(z) + \theta(\mathbf{x},t)$, etc.

$$\frac{Dq_v}{Dt} = -C_d + E_r, \quad \frac{Dq_c}{Dt} = C_d - A_r - C_r$$

$$\frac{Dq_r}{Dt} - \frac{\partial}{\partial z} (V_T q_r) = A_r + C_r - E_r$$

 C_d : Condensation $q_v \to q_c$, E_r : Evaporation $q_r \to q_v$

 A_r , C_r : Auto-conversion and Collection $q_c \rightarrow q_r$

 $0 \le V_T \lesssim 10 \text{ m s}^{-1}$: Rainfall velocity

All source terms need to be closed

For example:

$$C_d = \alpha_d^{-1} (q_v - q_{vs}(T, p))^+$$

$$E_{r} = \alpha_{r}^{-1} (q_{vs}(T, p) - q_{v})^{+} q_{r}$$

 $q_{vs}(T,p) \approx q_{vs}(z)$ at lowest order in a Taylor Series $\alpha_d = \alpha_r$ are cond/evap time scale

Fast Cloud Microphysics

fast autoconversion: (Seitter & Kuo '83, Emanuel '86, Majda, Xing & Mohammadian '10, Deng, S & Madja '12)

Fast Autoconversion and Rain Evaporation: FARE

$$\frac{Dq_{\text{tot}}}{Dt} - \frac{\partial}{\partial z} (V_T q_r) = 0$$

and the source terms maintain the constraint

$$C_d - E_r = \begin{cases} 0, & q_{\text{tot}} (=q_v) < q_{vs} \\ -w \ dq_{vs}(z)/dz, & q_{\text{tot}} (=q_{vs} + q_r) \ge q_{vs} \end{cases}$$

 $q_{vs}(T,p) \approx q_{vs}(z)$ is the saturation profile

With $C_d - E_r > 0$:

$$\frac{D\theta}{Dt} + \frac{d\tilde{\theta}}{dz}w = \frac{L}{c_p}(C_d - E_r)$$

$$\frac{D\boldsymbol{w}}{Dt} = -\frac{\partial p}{\partial z} + g\left(\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}_o} + \boldsymbol{\varepsilon}_o q_v - q_r\right)$$

Contours of Water Anomaly ($128 \times 128 \times 15 \text{ km}$ **)**

Excess water, e.g. at low altitudes, leads to a precipitating updraft

A FARE Tropical Squall Line: 3D Contours of Rain Water

Hernandez-Duenas, Majda, S, Stechmann (2014)

Emanuel, Fantini, Thorpe: 1987; 2-layer, semi-geostrophic; ascending (descending) saturated (dry) air; baroclinic instability

Lapeyre, Held: 2004; 2-layer QG, turbulence study; parameterization of precip/latent heat release; jets (cyclonic vortices) dominate for weak (strong) latent heat release

Booth, Polvani, O'Gorman, Wang: 2015; extend dry theories using effective static stability; moisture ==> reduced stability parameterized by area fraction of upward motion

FARE QG for Scales larger than 1,000 km:

$$\begin{aligned} \frac{D\mathbf{u}}{Dt} + f\hat{\mathbf{z}} \times \mathbf{u} &= -\nabla \left(\frac{p}{\rho_0}\right) + \hat{\mathbf{z}} \left(b_u H_u + b_s H_s\right), \quad \nabla \cdot \mathbf{u} = 0\\ \frac{Dq_t}{Dt} + V_T \frac{\partial q_r}{\partial z} &= 0, \quad \frac{D\theta_e}{Dt} = 0, \quad \theta_e = \theta + (L_v q_v / c_p)\\ b_u &= g \left[\frac{\theta_e}{\theta_o} + \left(R_{vd} - \frac{L_v}{c_p \theta_o}\right)q_t\right]\\ b_s &= g \left[\frac{\theta_e}{\theta_o} + \left(R_{vd} - \frac{L_v}{c_p \theta_o} + 1\right)q_{vs}(z) - q_t\right] \end{aligned}$$

 $H_u = 1$, $H_u = 0$ unsaturated, $H_s = 1 - H_u$

Distinguished Limit; Non-dimensional Parameters

$$Ro = \epsilon, \quad Fr = \frac{L}{L_d}Ro = O(\epsilon)$$

 $L_d = NH/f$ is different for dry, unsaturated and saturated!

stable: q_t rapidly decreasing, θ_e rapidly increasing with z

$$G_M = -\frac{L_v}{c_p} \frac{d\tilde{q}_t/dz}{d\tilde{\theta}_e/dz} = O(1), \quad V_r = O(1)$$

All variables are expanded:

$$f = f^{(0)} + \epsilon f^{(1)} + \epsilon^2 f^{(2)} + \cdots$$

Lowest-Order Geostrophic, Hydrostatic Balance

$$u^{(0)} = -\frac{\partial \psi}{\partial y}, \quad v^{(0)} = \frac{\partial \psi}{\partial x}, \quad \zeta^{(0)} = \nabla_h^2 \psi$$

$$b_u^{(0)}H_u + b_s^{(0)}H_s = \frac{L}{L_d}\frac{\partial\psi}{\partial z}$$

where ψ is the pressure.

Next-Order Correction: *PV*^{*u*} **formulation of PQG**

$$PV_u \equiv \nabla_h^2 \psi + \frac{L}{L_{du}} \frac{\partial b_u^{(0)}}{\partial z}$$

 $b_u^{(0)}$ defined in both unsaturated and saturated regions

$$\frac{D_h^{(0)} P V_u}{Dt} = -\frac{L}{L_{du}} \hat{\mathbf{z}} \times \nabla_h \frac{\partial \psi}{\partial z} \cdot \nabla_h b_u^{(0)} + \frac{\partial}{\partial z} \left(V_r \frac{L}{L_{du}} \frac{\partial q_r^{(0)}}{\partial z} \right)$$

coupled to a thermodynamic equation involving q_t

Need jump conditions at phase boundaries

A nonlinear elliptic equation:

$$\nabla_h^2 \psi + \frac{L^2}{L_{du}^2} \frac{\partial}{\partial z} \left[H_u \frac{\partial \psi}{\partial z} \right] + D_M \frac{L^2}{L_{du}^2} \frac{\partial}{\partial z} \left[H_s \left(\frac{\partial \psi}{\partial z} + \frac{L_{du}}{L} (M - D_M q_{vs}) \right) \right] = PV_u.$$

Old known locations of phase boundaries serve as the initial guess of iteration; $D_M = 1 + G_M > 1$ constant; $M = q_t + G_M \theta_e$.

Eady Baroclinic Instability (either phase; away from phase boundaries)

 $\psi = -\overline{U}zy + \psi'(x, y, t)$

(zonal flow with vertical shear)

$$b^{(0)} = -(L/L_d)\overline{U}y + b'(x, y, z, t)$$

(temperature decreasing from equator to pole)

New feature (optional)

$$q_t^{(0)} = -\overline{Q}y + q_t'(x, y, x, t)$$

(water decreasing from equator to pole)

$$\psi' = \operatorname{Re}[\Psi(z)\exp(i(kx+ly-\omega t))], \quad q'_t = \operatorname{Re}[Q(z)\exp(i(kx+ly-\omega t))]$$

Comparison of Eady Anomalies; Buoyancy

Most unstable mode of non-dimensional buoyancy anomaly (normalized by energy); Left (Right): Unsaturated (Saturated) buoyancy anomaly. Saturated wavelength 25% smaller.

New! Fluxes of Water Vapor (unsaturated)

Meridional flux of water vapor anomaly; Left (Right): Eady background water vapor zero (decreasing) with latitude.

New! Fluxes of Liquid Water (saturated)

Meridional flux of rain water anomaly; Background rain decreasing with latitude; Left: $V_T = 0$; Right: $V_T = O(1)$.

Current/Future Work

• Simple exact solutions with a phase change,

e.g. saturated cold core transitioning to unsaturated outer core; axisymmetric

 Numerical methods for accurate/efficient computation of large-scale flow with evolving phase boundaries

(involves inversion of a nonlinear elliptic problem with unknown phase boundaries)